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Abstract

This paper analyzes extreme joint comovements and contagion effects among

equity markets with a focus on the complex dependence structure among multiple

markets. Our results reveal an increasing likelihood for extreme comovements

among equity markets over the past decades in combination with asymmetric ef-

fects between positive and negative comovements. Connectedness among markets

during extreme financial times seems to be driven by regionality, even in recent

times of globalization. This might be related to information asymmetries for in-

vestors regarding distant equity markets. Our results emphasize the importance

of trans-regional investments which are necessary to benefit from diversification

during financial turmoil.
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1 INTRODUCTION

The degree of equity market integration is crucial for academic and practical ques-

tions in the area of finance and is subject to many scientific studies. One reason for

this is its importance with respect to asset diversification. Investors can easily access

a great variety of different investment opportunities in highly integrated markets

which enables higher diversification benefits and more efficient long run investments.

On the dark side of market integration stands the counterpart of this taxonomy.

In turmoil times, investment risk can only be reduced through diversification if

equity markets do not behave in a comonotone manner. However, especially recent
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financial crises give rise to the conjecture that equity markets seem to exhibit strong

comovements in bad economic times. This aspect of market integration seems to be

crucial for asset allocation and risk management. Beyond that, market integration

is connected to many important topics in the financial literature, e.g., building cross-

border regulatory regimes, building monetary unions, reducing exchange rate risk

or enhancing trade integration.

Even though a common understanding for the meaning of market integration seems

to exist, a variety of different methods and measures regarding its quantification can

be found. When comparing the literature, several shortcomings related to existing

measures of market integration are highlighted. Following these explanations, we

argue that a framework for market integration should not rely on linear correlation

(see, e.g., Pukthuanthong and Roll, 2009), rather should allow for asymmetric de-

pendencies among equity markets (see, e.g., Longin and Solnik, 2001) and take into

account simultaneous movements of multiple equity markets at the same time (see,

e.g., Bae et al., 2003; Christiansen and Ranaldo, 2009).

The aim of this paper is to provide such a model framework and analyze several

aspects of market integration, i.e., the development for the likelihood of contagion

events, the identification of strongly connected economies and the identification of

equity markets which are most connected during times of financial turmoil and

upswing. We use a pair-copula construction to capture dependencies among equity

markets. This helps us to estimate probabilities for comovements of multiple equity

markets at the same time. Such estimates are not provided in previous studies

because of model framework limitations. In addition, we are able to identify dif-

ferences regarding dependence structures between various equity markets which

is of great importance to identify economies which are strongly connected during

extreme financial times. To the best of our knowledge, such an analysis has not been

conducted so far and especially the above named research objects have not been

addressed in previous studies.

We investigate equity markets over the past decades and find that the likelihood

for events in which multiple markets are jointly in a very good or very bad state

at the same time increases during our observation period. In addition, we find

dependencies in the extreme tails for good and bad market conditions, while the

latter seem to be stronger. This leads to asymmetries regarding the occurrence of
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critical and upswing events and a higher likelihood for equity market crashes than

for financial upswings among multiple equity markets. Moreover, a high degree of

connectedness during extreme periods is strongly related to geographical distance.

For instance the USA exhibit small dependencies during extreme financial times to

the remaining economies in a data set which is driven by European countries. Other-

wise, strong dependencies during critical as well as upswing market periods can be

observed in another data set which is dominated by economies from the American

continent. Overall, this shows that connectedness during extreme financial times is

driven by regionality. This seems to contradict intuition due to an increasing level of

globalization in more recent periods. However, the cause for this observation might

still be related to investors’ tendency for regional investments and a home bias due

to information asymmetries regarding distant equity markets. In our opinion this

deepens the understanding of contagion and spillover effects as well as regional and

trans-regional diversification effects and therefore plays an important role in the

context of market integration.

The remainder of this paper is structured as follows. We provide a literature re-

view in Section 2 and motivate our framework for market integration in Section 3.

Section 4 illustrates technical details of our model framework, Section 5 describes

quantities applied in the empirical analysis, while Section 6 exhibits results. Section

7 concludes.

2 LITERATURE REVIEW

A variety of different approaches to measure market integration exists. In gen-

eral, there seems to be an intuitive understanding what market integration is.

Nevertheless, techniques of different analyses regarding market integration often

strongly deviate from each other. The focus of this paper is laid on equity market

comovements during economic boom and turmoil times. This requires an accurate

specification of dependencies among equity markets which is why we mainly present

literature that also emphasizes this aspect of market integration.

Longin and Solnik (2001) use an application of extreme value theory to investigate

the asymptotic behavior in correlation among equity markets. Within their study

they focus on bivariate relations between the US and four other equity markets.
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Their main results show that correlation among large losses is significantly higher

than among large earnings. This asymmetry can not be reproduced by the multi-

variate normal model. These results motivate our model framework which is very

flexible and capable of reproducing non-linear dependencies. In contrast to their

paper, our analysis goes beyond the dimensionality of bivariate relationships as

we simultaneously take into account the dependence structure of up to 17 equity

markets. In addition, we try to understand and illustrate economic consequences of

non-linear dependencies among equity markets.

Bae et al. (2003) examine financial contagion within Asia and Latin America, be-

tween these regions and their impact on Europe and the United States. Hereby they

empirically assess the number of contemporaneous quantile exceedances among

countries and regress these results on regional volatilities as well as interest rate

and exchange rate levels. In a second step of their study they also include spillover ef-

fects among regions through including the number of contemporaneous coexceedance

events in the respective different region within their regression analysis. Their

results show that contagion effects are more pronounced in Latin America than in

Asia, while Asian contagion has a great impact on the United States. Similar to

Bae et al. (2003), one of our interests in this paper is the occurrence of multiple

equity markets being in a critical or upswing state at the same time. In contrast to

their study, we estimate a parametric model capturing the dependence structure

among all markets. Bae et al. (2003) empirically count the number of equity market

coexceedances. This restricts the analysis to events which already could have been

observed in past data. Furthermore, especially events in which larger numbers of

equity markets are in a critical or upswing state at the same time are empirically

rare which may lead to high statistical uncertainties when using historical frequen-

cies. Our parametric approach allows the identification of events which did not occur

during the observation period and assessing equity market realizations in tail events

by simulation which reduces statistical uncertainties. In addition, we set our focus

on the development of joint equity market coexceedance behavior over time and focus

on the identification of markets which show strong dependencies during extreme

financial times.

Kim et al. (2005) and Bartram et al. (2007) both use correlation measures to examine

market integration. Kim et al. (2005) analyze market integration among EU member

states between 1989 and 2003. To achieve this goal, they estimate time-varying
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correlations between EU states and a market value weighted EU index with the

remaining EU countries and regress these results on variables representing the

development of the macroeconomic environment. They find a clear shift in market

integration after the introduction of the European Monetary Unit. Bartram et al.

(2007) focus on market integration among European equity markets after the in-

troduction of the Euro. They examine time-varying bivariate correlation between

European countries and an European equity index. In their analysis they use a

combination of a GARCH type model with a Gaussian dependence structure. Their

results show that an increase in market dependence after the introduction of the

Euro can only be observed for large equity markets, i.e., France, Germany, Italy,

Netherlands, and Spain.

Pukthuanthong and Roll (2009) on the other hand criticize the use of linear correla-

tion as a measure for market integration as it appears to be flawed (see Section 3).

The authors use a multi-factor model and suggest to use R2 as a measure for market

integration. Among 81 countries in their data set, they find an increase in global

market integration which is the highest for countries with the longest history of

equity markets. However, as shown in more detail in the next section, R2 measures

market integration over all states of the economy and does not differentiate between

economic conditions. The focus and most important findings in our paper relate to

market integration and connectedness during extreme financial times.

Christiansen and Ranaldo (2009) apply the method of Bae et al. (2003) to analyze

contagion effects between new and old EU member states. They investigate whether

persistence, asset class, volatility and asymmetry effects impact contemporaneous

quantile exceedances among countries. In addition they aim to detect whether co-

movements among EU equity markets change after joining the EU. Overall, their

results show strong persistence for coexceedances in new EU member states’ equity

markets which are linked to old EU member states. Furthermore integration has

increased for new EU member states after joining the EU.

Beine et al. (2010) determine coexceedance probabilities for lower and upper return

quantiles among pairs of countries and regress these results on financial liberaliza-

tion, trade integration, industry structure and exchange rate volatility. Their most

important findings show financial liberalization only increases left tail comovements

among equity markets, while trade integration increases comovements among lower
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and upper tail events. We also use coexceedance probabilities to quantify the degree

of market integration with respect to extreme comovements. In contrast to Beine

et al. (2010), we think it is important to take into account the exceedance probability

of more than two economies at the same time. Within our analysis, we determine

probabilities for up to 12 markets out of 17 being in a critical or upswing state at the

same time. We motivate this proceeding in more detail in the next section.

3 MOTIVATING A NOVEL FRAMEWORK FOR MARKET INTEGRATION

Previous literature shows different ways to measure market integration. Several

critical issues for these measures have been stressed which is why we derive at-

tributes that a model framework for market integration should exhibit before we

start with our analysis.

First, linear correlation is not an appropriate measure for market integration as it is

bounded between attainable minimum and maximum linear correlation and only

achieves its maximum borders ±1 in special cases. This is shown by Pukthuanthong

and Roll (2009) in a market integration analysis and by Denuit and Dhaene (2003) in

general. Pukthuanthong and Roll (2009) analyze market integration using a multi

factor model with principal components as explanatory variables. In an introductory

example they show that even though two markets explicitly depend on two global

factors and, thus, are perfectly integrated, linear correlation is bounded if factor

loadings of explanatory variables are not absolutely proportional. This is true for all

linear factor models and not knowing such a relation can lead to wrong conclusions

regarding the level of market integration. In general, it can be shown that linear

correlation for two random vectors is bounded unless their distinction solely relies

on location and scaling parameters. Hence, when using linear correlation for mea-

suring market integration without comparing it to its the upper bound (see Denuit

and Dhaene, 2003), deviations regarding the level of market integration might be

spurious.

Second, the restriction on symmetric and/or linear dependence structures should

be avoided when measuring market integration. Linear models are known to show

asymptotic independence in the outer tails of the multivariate distribution. A charac-

teristic like this is not in line with the general consensus of contagion which usually
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describes events in which turmoil on one equity market leads to economic downturn

in other markets. Such a behavior comes along with an increase in dependence

during harsh economic conditions and can not be captured by a linear dependence

model. In this context Bae et al. (2003) point out that “there is something different

about extremely bad events that leads to irrational outcomes, excess volatility, and

even panics. In the context of stock returns, this means that if panic grips investors

as stock returns fall and leads them to ignore economic fundamentals, one would

expect large negative returns to be contagious in a way that small negative returns

are not. Correlations that give equal weight to small and large returns are not

appropriate for an evaluation of the differential impact of large returns.”

In addition, asymmetry between good and bad comovements on equity markets can

be observed empirically. Longin and Solnik (2001) examine the relation between the

United States and the United Kingdom, France, Germany and Japan on a bivariate

basis. They detect correlations between large losses to be significantly higher than

among positive returns. Bae et al. (2003) find asymmetric relationships between

negative and positive returns on equity markets in Latin America (but not in Asia),

while Christiansen and Ranaldo (2009) also detect these asymmetries among old

European countries.1

To get an idea on the impact of dependence asymmetries for market integration, we

consider the following simplified example. We take a look at two hypothetical equity

markets and their relation. First, we assume the true scenario to be represented by

the left plot in Figure 1. It can be seen that negative comovements seem to be more

likely than positive comovements in this scenario. Second, assume we do not know

this feature and estimate a linear model for both markets. The estimated model and

its reproduction of the true scenario is given in the right plot of Figure 1. For the

reason of simplicity, we assume one might measure the level of market integration

between both markets through the degree of concordance given by Kendall’s τ for

the moment which in contrast to linear correlation is not bounded (see Denuit and

Dhaene, 2003).2 This value is nearly identical for the true scenario (non-linear) and

its estimated (linear) version. As a consequence the inference of the same level of

1See Christiansen and Ranaldo (2009) for the definition of old European countries.
2Kendall’s τ is a rank correlation measure which is based on concordance instead of linear relation-

ships. This attribute makes it possible to compare the degree of dependence between different types

of dependence structures.
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market integration would be drawn. However, this completely ignores the character-

istic of market integration in this case and the fact that, in truth, market integration

is mainly driven by negative joint events in both markets. One would also miss this

characteristic of market integration when using R2 of the linear regression model as

done in Pukthuanthong and Roll (2009). In our example, R2 = 0.55 in the left plot

and R2 = 0.63 in the right plot of Figure 1. The reason lies in the linear nature of R2

which is not able to identify the origin for the degree of market integration and the

type of dependence structure. While markets seem to be similarly integrated during

all economic conditions in the right plot of Figure 1, the level of market integration

between both equity markets in the left plot of Figure 1 clearly originates from a

strong level of connectedness during bad economic conditions.

This highlights that the characteristic for different types of market integration might

be neglected when not accounting for asymmetric dependencies and using integration

measures based on linear concepts. We conclude this example with some numbers.

Assume, we are interested in the number of joint events in which both markets

exhibit a return below its empirical 5%-quantile. While 38 such events occurred

among 1,000 realizations, the linear model only estimates 28. On the other hand,

the occurrence of joint events in which both market returns exceed their empirical

95%-quantile would be overestimated by the linear model estimating 25 events

where only 3 occurred under the true model. This taxonomy could be analogously

transfered to a scenario in which market integration is driven by comovements for

high returns but reproduced through a linear model. In both cases, the assumption

of a linear dependence structure might lead to a wrong conclusion regarding the

characteristic of market integration which is why a model framework for market

integration should capture non-linear dependencies if they are present in the data.
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Figure 1: Characteristics of market integration in the presence of non-linear de-
pendencies
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Third, a framework for market integration should be able to analyze simultaneous

movements of equity markets. A part of the previous literature considers bivariate

relations when analyzing market integration (see, e.g., Beine et al., 2010). If the

interest lies in quantifying events which affect multiple markets at the same time,

bilateral information might not be sufficient. For example, if we are interested in

measuring the probability that all markets crash, i.e., each market experiences a

critical situation AC
i , i = 1, ...,n. This probability is given through

P(AC
1 ∩ ...∩ AC

n )= P(AC
1 ) ·P(AC

2 |AC
1 ) · ... ·P(AC

n |AC
1 ∩ ...∩ AC

n−1), (3.1)

and we can see that it relies on more information than bilateral (conditional) re-

lationships between markets.3 The same holds true for multivariate conditional

probabilities which might be of special interest to identify the situation on all equity

markets given one market experiences a critical situation, e.g.,

P(AC
1 ∩ ...∩ AC

n−1|AC
n )= P(AC

1 |AC
2 ∩ ...∩ AC

n−1 ∩ AC
n ) · ... ·P(AC

n−1|AC
n ). (3.2)

3Except if we face the special cases of abolute dependence or independence.
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Furthermore, we think that it is important not to condense information among

equity markets for our analysis. One way to do so is given in Bartram et al. (2007).

Given one country, they build a stock market index including the remaining equity

markets within their data set and estimate time varying correlation between each

country and index. Depending on the question of interest, compressing information

among equity markets might hinder oneself to identify driving factors for market

integration. The following example is made for the illustration of this aspect. We

assume three equity markets EM1,EM2,EM3 to follow a multivariate standard

Gaussian distribution (strictly for the sake of simplicity) and two possible scenarios

regarding the correlation structure among equity markets displayed in Table 1.

Table 1: Contemporaneous consideration of equity market movements

Scenario 1

EM1 EM2 EM3

EM1 1.00 0.30 0.10

EM2 0.30 1.00 0.70

EM3 0.10 0.70 1.00

Stress in EM1 Stress in EM2 Stress in EM3

Cond. Expected Loss -0.96 -1.37 -1.24

Scenario 2

EM1 EM2 EM3

EM1 1.00 0.30 0.40

EM2 0.30 1.00 0.40

EM3 0.40 0.40 1.00

Stress in EM1 Stress in EM2 Stress in EM3

Cond. Expected Loss -1.17 -1.17 -1.24

It can be seen that the average correlation is the same for both scenarios. In addi-

tion, e.g., if we calculate an equally weighted index using equity market one and

two and determine its correlation to equity market three, we get the same number

(0.50) which might lead to the conclusion of identical levels of market integration

for equity market number three in both scenarios. However, we can see that the

dependence structure clearly differs between both scenarios. A potential economic

10



impact following different dependence structures can be seen when we try to identify

the equity market which is most important for contagion. Assuming an equally

weighted portfolio of all markets, we calculate conditional expected losses of the

portfolio, given one equity market faces a critical event. Here, this means its re-

turn (in %) is below its 5%-quantile. In the first scenario, equity market number

two is most relevant as we face the highest potential loss if it gets under distress.

With a change in the dependence structure this changes, such that equity market

number three is potentially most important for negative joint events. Such obser-

vations can not be made if each equity market movement is not considered separately.

Summing up, our analysis of market integration should not rely on linear correlation,

should be able to capture non-linear dependencies and take into account all market

movements at the same time. By this means we try to circumvent restrictions of

previous market integration analyses and to provide a framework which is flexible

with regards to special features of equity markets’ comovements.

4 MODELING THE MULTIVARIATE EQUITY RETURN DISTRIBUTION

Our approach takes into account the multivariate distribution of all equity markets

under consideration. We use the concept of pair-copulas and therefore separate

the information of dependence among equity markets and their marginal distribu-

tions. The latter are described first, while the concept of pair copulas is explained

subsequently.

4.1 Marginal distributions

For each equity index Si,t, i = 1, ...,n, at time t = 1, ..,T, the log-return is defined

through the logarithmic price difference X i,t = ln(Si,t)− ln(Si,t−1). Log-returns of

financial data are known to show serial correlation, heteroskedasticity, volatility

clustering, skewness and often heavy tails. To capture time dynamic effects, we as-

sume log-returns X i,t to follow a stochastic process of an ARMA(p, q)−GARCH(r, s)

form given by:

X i,t =µi,t +εi,t, εi,t =σi,tZi,t,
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where the time dependent drift µi,t and variance σ2
i,t is defined through

µi,t =µi +
p∑

j=1
φi, j X i,t−1 +

q∑
k=1

θi,kεi,t−1, σ2
i,t =ωi +

r∑
j=1

αi, jε
2
i,t−1 +

s∑
k=1

βi,kσ
2
i,t−1.

In addition, residuals Zi,t are assumed to follow a skewed Student t distribution Fi

which allows us to capture skewness and leptokurtic behavior of log-returns. After

estimating this process for each log-return time series, standardized residuals can be

transformed to the unit hypercube using the cumulative distribution function Fi(Zi,t)

for each estimated marginal distribution. In a next step, these values are used to

estimate the dependence structure among equity indices which is modeled through

a pair-copula construction. As a consequence, the dependence structure is not driven

by any effects of marginal distributions, e.g., serial correlation or volatility clustering,

as these effects are filtered through the marginal model before dependencies are

estimated.

4.2 Dependence modeling using pair-copula constructions

We apply a pair-copula approach to model dependencies between equity markets.

The theory of copulas has gained a lot of popularity because it delivers a very flexible

concept of dependence modeling. According to the theorem by Sklar (1959), any

n-dimensional distribution function F can be separated into its univariate marginal

distribution functions Fi, i = 1, . . . ,n, and a copula C such that

F (x1, . . . , xn)= C (F1(x1), . . . ,Fn(xn))

for all x1, . . . , xn ∈R. If the marginal distribution functions are continuous, the copula

function is even unique. Furthermore the univariate marginal distribution functions

do not contain any information about the dependence structure. This information is

completely covered by the copula. If F is absolutely continuous and F1, . . . ,Fn are

strictly increasing continuous, the density of the n-dimensional distribution function

is given by

f (x1, . . . , xn)=
[

n∏
k=1

fk(xk)

]
× c (F1(x1), . . . ,Fn(xn))

where c denotes the density of the copula C and f the marginal densities. Arbitrary

univariate marginal distribution functions can be combined with a given copula to
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define a new multivariate distribution function. Hence, Sklar’s theorem provides a

powerful method to construct flexible multivariate distribution functions of empirical

datasets. There exists a large number of parametric copulas separated into bivariate

and multivariate dimensions. In the bivariate case there is a wide variety of differ-

ent copula types exhibiting flexible and complex dependence patterns, whereas the

number of higher dimensional copulas is rather limited. A major reason for this is

the fact that not every bivariate copula family can be easily extended to a flexible

multivariate case. Concerning multivariate copulas there are various main classes

like the one of elliptical copulas, which includes the Gaussian and the Student’s t

copula. They are always symmetric and the multivariate Gaussian does not posses

any tail dependence.4 The class of multivariate Archimedean copulas, e.g., the

Clayton or Gumbel copula, have interesting properties such as tail dependence and

can be described through generator functions. Nevertheless, due to exchangeability,

the degree of dependence among x1, ..., xn is identical for each pair if F is modeled

through a multivariate Archimedean copula. This seems to be a very serious restric-

tion when modeling financial data. Even though this restriction is circumvented

through the use of hierarchical Archimedean copulas, still, a restriction exists as

these models only allow to model dependencies which decrease with increasing

hierarchal structure.

Dependency patterns of multivariate data are often very complex exhibiting non-

linearity and dependence in the extremes. Therefore in many cases more flexible

multivariate copula models are necessary. Another member of the multivariate

copula family are pair-copula constructions which constitute a very flexible class

of dependence models by sequentially decomposing the joint distributions into bi-

variate building blocks. It is a treelike construction, built from pair-copulae with

conditional distributions as their two arguments. First introduced by Joe (1996),

pair-copula constructions were further explored by Bedford and Cooke (2001, 2002)

and Kurowicka and Cooke (2006).

We regard a three dimensional case to illustrate a pair-copula construction (see, e.g.,

Aas et al., 2009; Brechmann and Czado, 2013). The joint density function can be

4In simple terms: upper tail dependence describes the asymptotic behavior of a random realization

for variable one being very high, given variable two exhibits a high value. Analogously, lower tail

dependence can be described.
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factorised as

f (x1, x2, x3)= f1 (x1) f2|1 (x2|x1) f3|1,2 (x3|x1, x2) . (4.1)

For the conditional densities it follows from Sklar’s theorem that

f2|1 (x2|x1)= f1,2 (x1, x2)
f1 (x1)

= c1,2 (F1 (x1) ,F2 (x2)) f1 (x1) f2 (x2)
f1 (x1)

= c1,2 (F1 (x1) ,F2 (x2)) f2 (x2) ,

(4.2)

and

f3|1,2 (x3|x1, x2)= f2,3|1 (x2, x3|x1)
f2|1 (x2|x1)

= c2,3|1
(
F2|1 (x2|x1) ,F3|1 (x3|x1)

)
f2|1 (x2|x1) f3|1 (x3|x1)

f2|1 (x2|x1)

= c2,3|1
(
F2|1 (x2|x1) ,F3|1 (x3|x1)

)
f3|1 (x3|x1)

(4.2)= c2,3|1
(
F2|1 (x2|x1) ,F3|1 (x3|x1)

)
c1,3 (F1 (x1) ,F3 (x3)) f3 (x3) ,

(4.3)

with

F (x|v)=
∂Cxv j |v− j

(
F

(
x|v− j

)
,F

(
v j|v− j

))
∂F

(
v j|v− j

) , (4.4)

where Cxv j |v− j is a bivariate copula and v− j denotes a vector with the jth component

v j removed. Merging Equations (4.1)-(4.3) leads to

f (x1, x2, x3)= f1 (x1) f2 (x2) f3 (x3) c1,2 (F1 (x1) ,F2 (x2))

c1,3 (F1 (x1) ,F3 (x3)) c2,3|1
(
F2|1 (x2|x1) ,F3|1 (x3|x1)

)
,

which demonstrates how the three-dimensional joint density can be decomposed into

a product of bivariate copulas C1,2, C1,3 and C2,3|1.5 Each bivariate copula can be

chosen separately where a great variety of different copula families can be selected,

exhibiting various attributes regarding the dependence structure. Thus, pair-copulas

are extremely flexible and using the generalization in n dimensions provides a possi-

bility to handle high-dimensional multivariate dependence structures.

Equation 4.1 can be decomposed in different ways which leads to multiple illus-

5Note that a common assumption made in this context is the so called simplifying assumption which

ensures that the dependence on X1 for C2,3|1 solely relates to F2|1 and F3|1.
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trations and varying pair-copula constructions. Thus, selecting the structure of a

pair-copula is an important task which exists in addition to the selection of each

copula used within the pair-copula and its parameter estimation. A way to illustrate

the structure of pair-copulas is given through so called regular vines (see Bedford

and Cooke, 2002). According to them a nested set of n−1 trees T j, j = 1, . . . ,n−1,

with n+1− j nodes and n− j edges is called n-dimensional vine. Each edge of a tree

corresponds to a pair-copula density and the edges of tree T j become the nodes of

tree T j+1. If two edges in tree T j share a node the proximity condition requires that

the corresponding nodes in tree T j+1 are joined by an edge. In the first tree the set of

nodes contains all indices 1, . . . ,n, and the set of edges is a set of n−1 pairs of these

indices. When generating the second tree, it should be noticed that the set of nodes

contains now sets of pairs of indices, while the set of edges is built of pairs of pairs of

indices and so on. The whole decomposition is defined by the marginal distribution

functions and n(n−1)/2 bivariate pair-copulas. Note that they do not necessarily

need to belong to the same class of copulas.

Two subclasses of regular vines are so called C-vine and D-vine copulas, which are

more restrictive cases of regular vine copulas. C-vines use only star like trees and are

ordered by importance. Within a C-vine representation those variables exhibiting

the highest degrees of dependence are usually modeled in the center of the first

trees. Hence, they are interpreted in a way that they are central for the dependence

structure which seems to be well suited for the purpose of our analysis as we are in-

terested in identifying equity markets being most connected. Thus, in the following,

we focus on the illustration of C-vine constructions. In the heart of the first tree is

one central variable which is linked to the remaining variables through bivariate cop-

ulas. In the center of the second tree, again, one variable is linked to the remaining

variables but now conditional on the pivotal variable in the first tree. This procedure

is repeated for the remaining trees whereby each pivotal position is called a root node.

More concrete, the C-vine copula selection is performed in a sequential way as pro-

posed by Czado et al. (2013). For the selection of the first root node the equity market

with the highest sum of absolute empirical Kendall’s τ values (to the remaining

markets) is chosen. The null hypothesis of independence is tested for each pair of

variables. If it is rejected, the appropriate bivariate copula model according to the

Akaike Information Criterion (AIC) is selected.6 In the next step the selection of

6The estimation is conducted using the VineCopula package in R. Within this package a number of
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the second root node follows. After removing dependence on the first pivotal equity

market the equity market with the maximal sum of absolute empirical Kendall’s τ

values (among remaining markets) is selected. Again, independence is tested and

copula families are selected according to the AIC. The whole selection procedure

is then carried forward for all remaining root nodes. In this sense, the selection of

all required bivariate copulas forming the building blocks of the C-vine copula is

conducted. Estimation then proceeds by joint maximum likelihood estimation over

all copula parameters.

5 MEASURING MARKET INTEGRATION

A variety of different measures for market integration exist in the literature. While

some measures, e.g., correlation, seem to be flawed (see Pukthuanthong and Roll,

2009), the choice for market integration measures may be determined through the

focus of the analysis. Similar to Bae et al. (2003), Christiansen and Ranaldo (2009)

and Beine et al. (2010) lies our interest in the behavior of equity markets during very

good and very bad economic conditions. We first focus on estimating probabilities

for coexceedance events on equity markets. In a next step, we are interested in

the dependence structure among economies and which are the most connected and

closely related during very good and very bad economic times.

Bae et al. (2003) and Christiansen and Ranaldo (2009) both empirically count how

many equity markets exhibit positive and negative coexceedances at the same

time. Positive means the market exceeds its empirical 95%-quantile and negative,

respectively, it falls below the 5%-quantile. They count coexceedances during the

whole observation period and, thus, implicitly rely their analysis on the empirical

distribution function. We try to extend this approach and estimate probabilities for

multiple coexceedance events of markets over time. We proceed as follows. At the

end of each year, daily returns from the past four years7 are used to estimate the

different copula families is available, i.e., the Gauss, Student t, Clayton, Frank, Gumbel, Joe, BB1,

BB6, BB7, Tawn type 1 and Tawn type 2 copula as well as rotated versions for the Clayton, Gumbel,

Joe, BB1, BB6, BB7, Tawn type 1 and Tawn type 2 copula.
7Different time frames were tested during the course of the analysis. Four years seemed to be a good

choice regarding the trade-off between higher statistical uncertainties when using less data and the

potential bias when using data which include events that occurred a long time ago. Results with

different time frames, e.g., one or two years, are available from the authors upon request.
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multivariate distribution. Next, we determine the probability

P(AC
i,t ∩ ...∩ AC

m,t ∩ Am+1,t...∩ An,t), j = 1, ...,n, and P(AU
i,t ∩ ...∩ AU

m,t ∩ Am+1,t...∩ An,t)

(5.1)

where i = 1, ...,m equity markets experience a critical (AC
j ) respectively upswing

(AU
j ) state at the same time t, while the remaining markets do not. Critical and

upswing events occur if the return for a given market is below or above a certain

quantile of the returns’ marginal distribution. In contrast to previous approaches,

this enables us to quantify occurrence probabilities for events which could not have

been observed empirically and to generate more stable estimates with respect to

statistical uncertainties. Events in which multiple markets experience a very good

or very bad return at the same time are sparse. As a consequence, using empirical

estimates for the probability of such events might get unreliable. Otherwise, assum-

ing we correctly estimate the multivariate distribution function among markets, we

can use an arbitrary high number of simulation paths which is used for estimating

probabilities given in Equation 5.1.

In addition, six measures are used to examine the dependence structure among

markets in detail and to identify market integration during extreme economic condi-

tions. We take advantage of the selection and estimation process for C-vine copula

structures when analyzing which countries might be highly connected to the others.

The equity market which in sum exhibits the highest level of concordance (measured

through Kendall’s τ) to the remaining markets is determined in the beginning of

the selection process. The relationship from this market to remaining markets is

estimated using pairs of copulas which defines the first root node. After isolating

the dependence from the equity market in the first root node, values for Kendall’s τ

among the remaining markets are determined and, again, the market with the high-

est dependence is chosen as the second root node. This procedure is repeated n−1

times. There might be a number of root nodes st ≤ (n−1) at time t, after which inde-

pendence can not be rejected for any possible pair copula. If such a point is reached,

we infer that st equity markets are sufficient to model the dependence among n

equity markets at time t. This might be interpreted similar to a principal component

approach with the distinction that dependence drivers are not independent from

each other and non-linear dependence among them is possible. Moreover, by means

of the position in root nodes, we are able to infer which equity markets are most
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relevant for modeling the dependence structure among all markets. Following this

approach, two quantities are taken into account. The number of markets relevant for

dependence st and given an equity market is among those st markets, we determine

its root note position and denote this as the rank j for country i which is important

for interconnectedness IC( j),it at time t. As already indicated in Section 3, such a

proceeding is able to quantify the level of connectedness among markets over all

economic conditions, but might fail in identifying which equity markets are most

connected during extreme market phases.

This is why we specify four additional measures. First, we determine the expected

number of how many remaining markets are in a critical or upswing state, respec-

tively, given equity market i is in such a state at time t. We denote this as CNC
it

for critical states and CNU
it for upswing states. Second, we determine the condi-

tional expected return of an equally weighted portfolio, given equity market i is in a

critical or upswing state at time t, CLC
it and CLU

it. Both measures are determined

using simulation techniques after the model is estimated as explained in Section

4. Again, we are interested in the order among equity markets which is why we

determine the rank j of each country for these measures at time t which results in

CNC
( j′),it, CNU

( j′),it, CLC
( j),it and CLU

( j′),it.
8 Contrary to the previous quantities in this

paper, these measures allow us to specifically analyze which countries are the most

connected during critical and upswing economic conditions.

6 DATA AND EMPIRICAL RESULTS

We start our analysis with a data set of 17 equity indexes representing the economies

of Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong,

Ireland, Italy, Japan, Netherlands, Singapore, South Africa, Switzerland, the United

Kingdom and the United States. This data set is identical to the cohort data set from

Pukthuanthong and Roll (2009) and is chosen because these nations are the largest

economies with the longest tradition of free capital mobility (see Pukthuanthong and

Roll, 2009). Daily log-returns for each index are taken from Thompson Datastream.

Each index is translated into US dollars and values which are identical on two or

more successive days are excluded as Datastream fills up data gaps due to holidays

8The apostrophe indicates that these value are ordered in decreasing order. See Section 6 for more

details.
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or comparable events with values from the previous day. In addition, we use one-day

lagged values for the US and Canada as European and Asian markets close before

North America such that events in both countries impact remaining markets on

the following day. Due to the estimation process of the copula model we exclusively

use days for estimation on which the log-return for each index is available at the

same time. The analysis starts in 1980 and ends in 2015. We assess measures for

market integration (see Section 5) at the end of each year and use data from the past

four years for the estimation of our model. Thus, our analysis starts in 1984 and

covers the development of these measures over the past 32 years. All results which

are generated through simulation are based on 200,000 sample paths. During the

development of this paper, each analysis has been conducted multiple times. While

small deviations could be observed regarding different seeds for random number

generation, the general findings are stable.

6.1 Probabilities for rare market events over time

Before we illustrate the development of probabilities for coexceedance events, results

regarding the estimation of the dependence structure among markets are presented.

As stated in Section 4, we use a pair copula model with a canonical vine structure

and choose among a variety of different copula families9 for each pair copula. We

compare this flexible C-Vine model to a model with the restriction of exclusively

allowing the Gauss copula for each pair copula (restricted model), thus, not taking

into account non-linear dependencies. Over the whole time period, the log likelihood

is higher for the flexible C-Vine model in comparison to the restricted one. Looking

at all copula families from the first root node over all estimated time periods, we find

that 85.2% of all estimated copula models exhibit non-linear dependencies, while

in 14.0% the Gauss or the Frank copula (not exhibiting tail dependencies) seems

to capture dependence best. For the remaining 0.08%, the null hypothesis of inde-

pendence is not rejected. The first root node seems to be most important regarding

the estimation of the dependence structure as the highest degree of dependence

is modeled within this node. While the relation between copulas exhibiting tail

dependence and not exhibiting tail dependence remains stable for higher root nodes,

the fraction of random variable pairs for which the null hypothesis of independence

can not be rejected steadily increases. Independence for the half of all random pairs

can not be rejected in the sixth root node and after the 14th root node, the null

9The choice for the best copula fit is conducted basing on the AIC.
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hypothesis of independence can not be rejected in any case. This indicates that the

dependence structure among all 17 equity markets can be modeled through up to 14

equity markets in each year. Overall, these results speak for dependence structures

divergent to the linear model.

When comparing the fit of both models the AIC of the overall model is taken into ac-

count. We find the flexible model dominates the restricted C-vine Gauss model with

respect to the AIC as its value is lower in each year. In addition to this comparison,

the Vuong (1989) and Clarke (2007) test are applied. Both tests are developed for

non-nested models and test the null hypothesis of the flexible C-vine model being

indistinguishable from the C-vine Gauss model.10 In each year the null hypothesis

is rejected at the 95% confidence level in case of both tests.11 Combining the AIC

and results for both tests leads to the conclusion of the flexible model being better

suited to capture dependencies within our data set than the restricted linear model.

Additionally, we analyze if the estimation further improves when using R-vines

instead of C-vines for the structure of the pair copula. Even though the AIC slightly

decreases through the use of R-vines, the null hypothesis of indistinguishability is

never rejected for both tests which is why we stick to the C-vine model. It seems

to be a natural choice if one is interested in central drivers for the dependence

structure and does not exhibit serious disadvantages regarding the estimation fit in

comparison to the even more flexible R-vine structure.

In the next step, we start with the analysis how probabilities for rare events among

financial markets evolve over the past 32 years. At first, we need to specify what is

considered as a rare event. In accordance with previous literature (see Bae et al.,

2003; Beine et al., 2010), we define a single market i to be in a critical state AC
i,t at

time t, if its log-return is equal or less to its 5%-quantile, analogously, an upswing

state AU
i,t is reached if the log-return is equal or higher to its 95%-quantile. Next, we

address the question how many markets need to be in a critical or upswing state

at the same time to speak of a rare event among all financial markets. Therefore

we empirically assess the frequency of comovements among markets over the whole

time period. Given this analysis, we define the following rare events: eight (ten,

twelve) or more financial markets experience a critical or upswing state on the same

day. Empirically, these events occurred with relative frequencies of 2.94% (1.96%,

10In our anaylsis, we use the test statistic which is corrected according to Akaike correction.
11Detailed results on these information are available from the authors upon request.
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1.25%) in case of critical comovements and 2.44% (1.60%, 0.71%) in case of upswing

comovements and, thus, seem to be reasonably considered as rare. Note that an asym-

metric behavior can be observed for these empirical numbers as critical movements

on multiple equity markets seem to occur more often than their upswing counterpart.

Figure 2 illustrates results for probabilities of rare comovements among equity

markets over time. The black solid line refers to critical market comovements, while

joint upswing states on equity markets are represented by the dashed green line.

All results are generated using the flexible C-vine model. It can be seen that the

occurrence of rare critical as well as upswing events on equity markets is getting

more likely over time. For example, the probability of eight or more markets be-

ing in a critical state equals 1.43% in the year 2000, while it is 3.54% in the year 2011.

Figure 2 shows that the probability for positive and negative contagion effects among

equity markets seems to increase together with the general level of market integra-

tion which has been examined in previous analyses. Pukthuanthong and Roll (2009)

quantify the level of market integration by means of R2 of a multivariate factor

model. Hereby, they detect an increase of market integration for the data set used in

our analysis. R2 directs the level of market integration to the whole distribution of

equity markets and, by this means, summarizes the information which parts of the

distribution are most relevant for the increase in market integration.
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Figure 2: Probabilities for rare comovements among financial markets over time
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Our analysis allows an isolated view of market integration in the lower and upper

tails of the multivariate equity market distribution. We hereby find that market

integration has increased in lower tails as well as in upper tails. However, the degree

of market integration which is measured through probabilities for rare events seems

to be higher for critical than for upswing events among markets over time. This can

be ascribed to the existence of non-linear dependencies and asymmetry regarding

the degree of upper and lower tail dependencies. To illustrate this more clearly,

we estimate the results of Figure 2 with the Gaussian model and compare these
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estimates with those of the flexible model in Figure 6 which is shown in the appendix.

It can be seen that the assessment of probabilities for critical and upswing events

through the Gauss model produces lower probability estimates than the flexible

model which can be ascribed to lower and upper tail dependencies. In addition,

the divergence between the Gauss and the flexible model is higher for probability

estimates regarding critical market comovements which speaks for a higher degree

of lower tail dependencies and, thus, asymmetry between probability estimates for

critical and upswing comovements. The flexible model provides a better fit to the

data than the Gaussian model according to the AIC. Moreover, its results, i.e., critical

comovements on multiple markets are more likely than upswing comovements and

are in line with empirical frequencies for the defined events (2.94%, 1.96%, 1.25% vs.

2.44%, 1.60%, 0.71%). Hence, we infer that in addition to the increase for probabil-

ities regarding positive and negative contagion effects, asymmetry seems to exist

between both.

Such a development is important for asset allocation and risk management. If

markets show similar reactions during adverse conditions, diversification effects get

lost in times in which they are needed the most. To show the economic consequence of

this, we assume to hold an equally weighted portfolio of all equity markets over time.

To assess the risk of this position, we determine the Value-at-Risk (V aRα,t) and the

Expected Shortfall (ESα,t) under the current estimated multivariate distribution at

time t and under the assumption of total dependence among markets. The confidence

level of the Value-at-Risk equals 1% and 2.5% for the Expected Shortfall which is

motivated by the regulatory market risk framework of Basel III. The difference

between the risk measure under total dependence to the risk measure with the

current dependence structure is what we ascribe to diversification benefits as this

amount can be reduced through diversifying assets and taking advantage of lower

dependencies among markets. Figure 3 plots these diversification benefits (in %).

It can be seen that regardless of the risk measure, diversification benefits decrease

over time. This clearly presents a challenge to portfolio as well as risk managers as

portfolio performance decreases and risk management requirements increase. In the

light of regulatory developments in the banking and insurance industry, the latter

seems to be of special relevance to financial service providers.
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Figure 3: Diversification effects among equity markets over time
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6.2 Identifying countries important for interconnectedness and con-

tagion effects

So far we quantified and analyzed the development of market integration in the

outer tails of the multivariate equity market distribution without specifying relevant

economies for our observations. In the following part of our analysis, we focus on

central markets for the dependence structure among all markets and the identifi-

cation of highly connected markets during extreme financial times. Starting with

the first part of this task, we examine the overall dependence among markets. After

removing serial dependence from the equity indices time series (see Section 4.1),

we calculate values for Kendall’s tau for each pair τ̂i j, i, j = 1, ...,17, i < j. In order

to illustrate the information of these pairs in a two dimensional space, we apply

multidimensional scaling to the dissimilarity measure 1− τ̂i j (see Brechmann et al.,

2013). Results for different time frames are illustrated in Figure 4. The stronger

the dependence among equity markets, the closer they are within each plot. The

plot in the top left corner shows dependencies for the most recent time frame, while

the whole sample period is illustrated in the bottom right. Dependence among

equity markets seems to be driven by regionality. For each time frame, European

economies are arranged very closely and a great distance to the American economies
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can be observed, while Asian economies are more close to Australia and also more

far away from the European economies. It appears that this seems to be even more

pronounced if the time frame is restricted to more recent time periods.

Figure 4: Multidimensional scaling among equity markets according to dissimi-
larity measure 1− τ̂ij
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At this point of the analysis, it should be clarified that strong regional linkages

measured through Kendall’s tau and illustrated as in Figure 4 are not sufficient

to examine which markets are strongly linked during extreme financial times, i.e.,

exhibit tail dependencies. Figure 1 illustrated a model with lower tail dependence

and a linear model which both nearly had the same value of Kendall’s tau. While

dependencies during critical market phases would exist in the first model, critical

events would converge to conditional independence in the linear model.12 Thus, the

12See Longin and Solnik (2001) on pages 653 and 654 for a very illustrative explanation of the concept

of asymptotic independence for linear dependence models.
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results presented in Figure 4 only provide insights regarding the overall degree of

dependence among markets and the issue of dependence during extreme financial

times is analyzed separately at a later stage in this paper.

Next, we use the selection process of the C-vine model to get a more detailed view on

interconnectedness among markets. At each root node, the equity market with the

highest degree of dependence to the remaining markets is chosen. Thus, the equity

market in the center of the first root node is the highest connected market in the

sample at time t. Conditioned on the equity market in the first root node, the equity

market in the center of the second root node is most connected to the remaining

markets and so on. At each point in time, we identify the position in which root node

each equity market is selected in the C-vine model. The more in front the position of

an equity market, the higher is its general degree of dependence to the remaining

markets. As explained in Section 5, after a certain number of root nodes st ≤ (n−1)

the test for independence might be rejected for all remaining pair copulas such that

countries in root nodes higher than st seem not to be connected to the remaining

markets. In this case, countries are not taken into account. Hence, for each equity

market at each point in time t, we either get the position in the root node of the

C-vine structure or the information that this market is not necessary for modeling

the dependence structure at time t. A summary for this analysis is given in Figure 5.

The height of each bar shows how frequently countries are selected among the first

st root nodes. The number above each bar is the average position each country has

over time, given it is among the first st root nodes.
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Figure 5: Country specific relevance for interconnectedness among equity mar-
kets
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Note: The height of each bar shows how frequently countries are chosen among the first s root nodes

over the 32 years. The number above each bar gives the average position each country has over time,

given it is among the first st root nodes

Looking at Figure 4, we expect European countries to be in front root note positions

in the C-Vine copula model. However, this only holds when thinking unconditionally.

Therefore, we also illustrate Figure 5 to provide more holistic insights regarding

the dependence structure among all markets and how the C-Vine model works. We

observe that the Netherlands and Switzerland often seem to be selected and to be

in front root note positions. At the same time we can see that Australia and the

USA are also selected very often in middle root note positions even though their

(unconditional) average values for τ̂i j are comparably low. How can these results be

explained? Imagine we chose the Netherlands in the first root note in the C-Vine

model as they exhibit the highest sum of absolute Kendall’s tau values for a given

time frame. In the next step, one needs to think in conditional dependence. The

fraction of dependence which is explained through the Netherlands is higher for

European economies than for the remaining economies as their linkage is stronger.
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Thus, conditional Kendall’s tau values in the second root node among European

countries are reduced to a higher extent which might lead to a Non-European econ-

omy in the center of the second root note. Table 4 in the Appendix provides detailed

results for Figure 5. For all time frames considered, we find a European economy at

the first root node position, but at least one Non-European economy among root node

position two to four. This illustrates which economies are most central for modeling

the whole dependence structure among all markets. Hereby, the Netherlands and

Switzerland seem to be most important among European countries and Australia

and the USA among Non-European countries.

It might be considered surprising that rather small European economies are selected

as central for modeling the dependence structure. It is very important to emphasize

that the results in Figure 5 should be interpreted with care and not mixed up with

the impact of one country on the others. This is related to the two-sided nature

of copulas regarding the description of the relationship between random numbers.

Contrary to, e.g., regression analysis in which the relation is one-sided (country x

impacts country y and not the other way around) the relation measured through

copulas is always two-sided (the relationship can be examined from country x to y

as well as from country y to x). For example, even though the degree of dependence

from country A to country B is high, it does not necessarily mean that country A

highly impacts country B. The high degree of dependence could also be originated

from a high impact of country B on country A.

In the next step of our analysis, we are aiming to identify which countries are most

connected during bad and good economic periods, i.e., in the outer tails of the multi-

variate distribution. For each equity market we determine the conditional expected

number of other markets being in an extreme event, given the equity market itself

is in an extreme event at time t (CNC
( j′),it, CNU

( j′),it). Note that the apostrophe j′

indicates that the order is sorted in decreasing manner. In addition, we determine

the conditional expected return of an equally weighted portfolio, given equity market

i is in a critical or upswing state at time t (CLC
( j),it, CLU

( j′),it). Both measures are the

lowest, the more equity market i is connected in the lower and upper tails of the

multivariate distribution. This means, the more equity market i is connected during

critical or upswing market phases, the lower is the rank for CN( j′),it as it is sorted in

decreasing order. Thus, a low rank implies that in tendency many other markets

are in a critical or upswing state, if equity market i faces a critical or upswing state.
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The more equity market i is connected during critical or upswing states, the higher

portfolio losses and gains should be, if equity market i faces a critical or upswing

state. This leads to low rank values for CLC
( j),it which is sorted in increasing order

and low rank values for CLU
( j′),it as it is sorted in decreasing order. Over our period

of 32 years, each measure is quantified for each equity market in every year. To

subsume these results the average of each measure for each equity market over

all years is displayed in Table 2. What immediately can be observed is that the

results for the expected conditional number of other markets in extreme events and

the ones for conditional expected returns are almost identical. Furthermore, equity

markets which are highly connected in critical market phases also seem to be highly

connected during economic upturn.

The most important result to us is that connectedness during extreme financial times

seems to be driven by regionality. For each measure provided in Table 2 all of the

ten European economies are among the first ten positions. As explained previously,

our results should not be mixed up with the impact of one equity market on others.

Much more, our results exhibit how strong each equity market is linked to the

remaining markets whereat it can not be distinguished whether this linkage is based

on the impact from the equity market to the other markets or the other way around.

In our opinion, this does not diminish our contribution as by means of our model

framework and our results, we are able to determine which markets exhibit strong

relationships during financial turmoil and economic upturn. Especially such markets

are of great relevance with regards to spillover and contagion effects. In our dataset,

that is the Netherlands, France, Germany and Switzerland. An information like this

seems to be of great value to, e.g., asset and risk managers. Modern asset and risk

management techniques are often strongly related to risk measures in the tails of

the distribution. Results in Table 2 should be included during portfolio construction

as diversification effects during critical financial times might be overestimated if

investment decisions are made with a great emphasis on regional more closely

related economies. In other words, asset and risk managers probably can take

more advantage from trans-regional diversification effects if a reduction of tail risk

measures is one of their aims.
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Table 2: Order for equity markets which have the highest average values for CNC
(j′),it, CNU

(j′),it, CLC
(j),it and CLU

(j′),it

Country Avg. Of CNC
( j′),it Country Avg. Of CNU

( j′),it Country Avg. Of CLC
( j),it Country Avg. Of CLU

( j′),it

Netherlands 1.8 Netherlands 1.8 Netherlands 1.7 Netherlands 1.7

France 3.0 France 3.3 France 3.3 France 3.6

Germany 3.8 Germany 3.5 Germany 3.8 Germany 3.6

Switzerland 4.0 Switzerland 4.1 Switzerland 4.0 Switzerland 4.2

Belgium 5.2 Belgium 5.4 Belgium 5.3 Belgium 5.9

United Kingdom 6.3 United Kingdom 6.5 United Kingdom 6.3 United Kingdom 6.3

Austria 7.7 Austria 7.2 Austria 8.0 Austria 7.2

Italy 7.8 Italy 7.6 Italy 8.1 Italy 7.8

Ireland 8.4 Ireland 8.4 Ireland 8.5 Ireland 8.4

Denmark 9.8 Denmark 10.3 Denmark 9.8 Denmark 9.6

South Africa 12.2 South Africa 11.9 South Africa 11.4 South Africa 11.5

Australia 12.5 Australia 12.3 Australia 12.4 Australia 12.4

Singapore 13.2 Singapore 13.1 Hong Kong 12.7 Hong Kong 13.2

Hong Kong 13.3 Japan 13.3 Japan 13.2 Japan 13.2

Japan 13.4 Hong Kong 13.8 Singapore 13.3 Singapore 13.2

United States 14.4 United States 14.3 United States 14.6 United States 14.7

Canada 16.3 Canada 16.4 Canada 16.7 Canada 16.7

Note: For each year, the order of countries with the highest expected number of other markets being in a critical or upswing state, given the market itself is

in such an event, is determined. An order of one means that the conditional expected value of other countries being in an extreme event at the same time

is the highest. Conditional expected returns regarding critical events are sorted in increasing order which means the highest loss is order one regarding

critical states. Conditional expected returns regarding upswing events are sorted in decreasing order which means the highest win is order one regarding

upswing states. We average these ranks for each country over time. The country with the lowest rank on average is considered to be the most connected

during critical and upswing conditions. Detailed results are given in the appendix in Table 5, 6, 7 and 8.
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Based on the previous results, we aim to deepen our analysis regarding regional

effects of connectedness during extreme financial times. To achieve this goal, we

analyze another data set which is dominated by countries from the American conti-

nent. We refer to this data set as data set two or the American data set, respectively,

in the further course of this analysis. More concrete, we collect data from the United

States, Canada, Argentina, Brazil, Mexico, Chile, Peru, Columbia, Australia, South

Korea, Japan, France and Germany. Hence, the data set contains thirteen countries

and is dominated by eight countries of the American continent. Three countries are

from Asia and Australia, while only two European economies are included in the

data set. Again, we use country specific indices provided by Thompson Datastream.

Due to limited data availability of some countries, our time frame spans from 1995

until 2015 such that first results start in 1999 when using the four year backward

looking point of view for the estimation of our model. Again, one day lagged data

values are used between American and European as well as Asian countries.

We start our comparison between the European and American data set with es-

timated probabilities for comovements among markets. Results are displayed in

Figure 9 in the Appendix. As data set two only includes thirteen countries instead

of 17, we focus on events in which six, eight or ten markets, respectively, are in a

critical or upswing state at the same time. The magnitude of estimated probabilities

is roughly comparable to the results of the European data set by this means. We

find that results behave similar, such that probabilities for extreme financial events

increase over time. This speaks for a higher level of connectedness during extreme

market phases in more recent times. In addition, it seems that asymmetry occurs

between critical and upswing events which speaks for stronger lower tail than upper

dependence among the economies of interest.

In a next step, we examine the overall level of connectedness among countries and

economies central for the multivariate dependence structure. Analogously to Figure

4 and 5, Figure 7 and 8 in the Appendix illustrate results for data set two. Again, we

find that economies with lower geographical distances exhibit higher dependencies.

For each time frame, we find that American economies are located more closely to

each other in Figure 7 and the European economies are situated more far away in

the plot. Regarding the results in Figure 8, independence can not be rejected after

a number of up to ten countries in each year. As already explained, countries are

selected according to Kendall’s Tau within each root node which captures the overall
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level of connectedness without differentiating for the type of dependence (lower,

upper or no tail dependence). The further an economy is selected in root notes, the

higher is its overall level of connectedness. We find that the USA and Brazil are

usually chosen at early positions during the estimation process which speaks for a

high degree of dependence of these economies to the remaining ones. Even if France

and Germany are not chosen as often, we can see that they seem to exhibit a rela-

tively high level of conditional dependence to the remaining counties. This is similar

to the results in Figure 5. Table 3 provides a summary for results of data set two

regarding the four measures which we already use in Table 2. Again, we find strong

similarities to the findings of the European data set. This means that six out of eight

American countries are among the first eight positions for each measure in Table 2.

In contrast to the European data set in which the USA is on second last position,

it is on the first and second position regarding all measures in Table 2. It appears,

that the USA, Mexico, Brazil and Canada seem to be most connected during ex-

treme financial times in the American data set. These results further strengthen our

conjecture that connectedness during extreme financial times is driven by regionality.

The relevance and importance of these results is enhanced by previous findings in

the literature which detects decreasing capital flows of asset trade for countries

with higher geographical distances and preferences of mutual fund managers for

local investments, respectively (see Gârleanu et al., 2015). These kinds of behavior

usually are explained by information asymmetries increasing with local distance

which means that trans-regional investments are often hindered by costs necessary

to overcome such information asymmetry. Regarding the topic of our paper, this

means that investments are usually made in geographical closely related regions. At

the same time these regions usually are collectively hit by critical or upswing events

due to high dependencies during such events. By this means, the importance for

overcoming trans-regional information asymmetries seems to be a necessary task in

order to benefit from diversification benefits during extreme financial times.
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Table 3: Order for equity markets (data set two) which have the highest average values for CNC
(j′),it, CNU

(j′),it, CLC
(j),it and CLU

(j′),it

Country Avg. Of CNC
( j′),it Country Avg. Of CNU

( j′),it Country Avg. Of CLC
( j),it Country Avg. Of CLU

( j′),it

United States 1.7 United States 1.5 Brazil 2.1 United States 1.7

Brazil 3.1 Mexico 2.8 United States 2.4 Brazil 2.3

Mexico 3.2 Brazil 3.3 Mexico 3.2 Mexico 2.8

Canada 3.8 Canada 4.3 Canada 3.9 Canada 4.9

Australia 5.8 Australia 5.5 Australia 5.9 Argentina 6.2

Argentina 7.0 Argentina 7.6 Argentina 6.1 Australia 6.4

Chile 7.4 Chile 7.8 Chile 7.6 South Korea 7.0

Peru 8.4 France 8.9 South Korea 8.1 Chile 8.2

South Korea 9.3 South Korea 8.9 Peru 8.2 Peru 8.9

Japan 9.8 Japan 9.0 Japan 10.1 Japan 9.2

France 9.8 Peru 9.2 France 10.8 France 10.4

Germany 10.0 Germany 10.2 Germany 11.1 Germany 11.0

Columbia 11.6 Columbia 12.1 Columbia 11.6 Columbia 11.9

Note: For each year, the order of countries with the highest expected number of other markets being in a critical or upswing state, given the market itself is

in such an event, is determined. An order of one means that the conditional expected value of other countries being in an extreme event at the same time

is the highest. Conditional expected returns regarding critical events are sorted in increasing order which means the highest loss is order one regarding

critical states. Conditional expected returns regarding upswing events are sorted in decreasing order which means the highest win is order one regarding

upswing states. We average these ranks for each country over time. The country with the lowest rank on average is considered to be the most connected

during critical and upswing conditions. Detailed results are given in the appendix in Table 9, 10, 11 and 12.

33



7 CONCLUSION

This paper analyzes the development of market integration for a variety of equity

markets. More specifically, our main interest lies on the likelihood of rare comove-

ments among markets over time, thereby focusing on market integration in the outer

tails of the multivariate equity market distribution. In addition, we identify which

markets are central for the dependence structure among all markets and which

markets are most connected during financial turmoil and upswing.

We find that equity markets seem to exhibit higher dependencies in the lower tail of

their distribution than in the upper tail. This leads to higher probabilities regarding

negative contagion effects than for positive contagion effects. Overall, probabilities

for rare comovements among equity markets increased for the past decades which

reduces diversification among markets and intensifies asset allocation as well as

risk management problems.

Furthermore, we observe that connectedness during extreme financial times seems

to be strongly linked to geographical distance even in recent times of increasing

globalization. For instance, while the USA appears to be weakly connected to the

European economies during critical and upswing market phases, it appears to be

strongly connected to geographically more close economies in such times. Analogous

results can be observed for Germany and France in data sets driven by European

and American economies, respectively. Overall, we identify the Netherlands, France,

Germany and Switzerland to be most connected during extreme financial times in a

data set including a majority of European equity markets and the USA, Brazil, Mex-

ico and Canada in a data set including a majority of American equity markets. These

results underline that connectedness during financial turmoil and upswing is driven

by regionality. Such observations might be linked to regional investment preferences

by investors due to information asymmetries for further distant equity markets.

Thus, we find great importance in overcoming such information asymmetries in

order to benefit from trans-regional diversification benefits.
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A APPENDIX

Figure 6: Probabilities for rare comovements among financial markets over time
- linear vs. non-linear model

Eight or more markets in critical state

Time

P
ro

ba
bi

lit
y

1984 1992 2000 2008

0.
00

0.
02

0.
04

C−vine flexible C−vine Gauss

Eight or more markets in upswing state

Time

P
ro

ba
bi

lit
y

1984 1992 2000 2008
0.

00
0.

02
0.

04

C−vine flexible C−vine Gauss

Ten or more markets in critical state

Time

P
ro

ba
bi

lit
y

1984 1992 2000 2008

0.
00

0
0.

01
0

0.
02

0
0.

03
0 C−vine flexible C−vine Gauss

Ten or more markets in upswing state

Time

P
ro

ba
bi

lit
y

1984 1992 2000 2008

0.
00

0
0.

01
0

0.
02

0
0.

03
0 C−vine flexible C−vine Gauss

Twelve or more markets in critical state

Time

P
ro

ba
bi

lit
y

1984 1992 2000 2008

0.
00

0
0.

01
0

0.
02

0

C−vine flexible C−vine Gauss

Twelve or more markets in upswing state

Time

P
ro

ba
bi

lit
y

1984 1992 2000 2008

0.
00

0
0.

01
0

0.
02

0

C−vine flexible C−vine Gauss

37



Table 4: Detailed results regarding Figure 5

Year AUS AUT BEL CAN DNK FRA GER HKG IRE ITA JPN NLD SGP ZAF CHE GBR USA

1984 4 3 7 - 5 9 - 6 - - 11 2 - - 1 8 10
1985 4 3 9 12 5 7 - 6 - - 10 2 11 - 1 8 -
1986 4 5 9 - 3 7 - - 11 - 10 2 8 - 1 6 12
1987 4 8 5 - 2 12 - - 6 10 - 3 7 - 1 11 9
1988 4 - 5 - 2 10 - - 7 9 - 3 8 11 1 - 6
1989 5 13 12 11 3 9 - - 6 8 - 2 7 10 1 - 4
1990 10 - 9 11 3 8 - - 7 12 - 2 5 6 1 - 4
1991 8 7 12 - 3 6 - - - - 9 2 5 10 1 11 4
1992 9 7 6 - 3 8 - 11 - 12 - 2 4 13 1 10 5
1993 9 8 6 - 3 7 - 12 10 - - 1 4 - 2 11 5
1994 9 8 2 - 6 7 11 - 10 - - 1 3 12 4 - 5
1995 3 7 2 10 - 6 12 - 8 - - 1 9 - 4 11 5
1996 8 - 7 11 3 12 2 - - - 9 1 4 - 10 5 6
1997 8 10 7 11 3 9 2 - - - - 1 4 12 - 5 6
1998 6 10 7 12 3 9 2 - - - - 1 8 11 - 5 4
1999 8 10 7 12 4 9 2 - - - - 1 6 11 - 5 3
2000 8 - 4 - 7 10 2 6 - - - 1 11 - 9 5 3
2001 7 10 13 12 6 5 8 2 - - - 1 11 - 3 9 4
2002 7 9 12 - 6 3 10 4 - - - 1 11 - 5 8 2
2003 9 6 13 - 8 3 - 5 - 12 11 1 - 7 4 10 2
2004 8 6 3 - - 1 13 4 12 10 - 0 11 9 5 7 2
2005 2 7 3 - 12 1 9 11 - - - 0 5 10 6 8 4
2006 2 7 5 - - 1 10 13 12 3 - 0 6 9 11 8 4
2007 2 - 5 - 7 1 - 4 10 3 11 8 - 9 12 - 6
2008 2 11 3 - 8 1 - 4 12 5 9 10 - - - 6 7
2009 2 3 4 - 9 1 - 5 13 10 11 8 - 12 - 6 7
2010 2 5 9 6 13 1 10 4 - - - 3 11 - 7 8 12
2011 2 5 13 6 9 1 10 4 - - 14 3 - 12 7 8 11
2012 2 6 9 - 12 1 11 5 - - 13 3 - 10 7 8 4
2013 2 7 - - 9 1 11 5 - - 10 3 12 0 6 8 4
2014 2 9 - 12 8 3 - 6 - - 11 1 - 7 5 10 4
2015 2 9 - - 11 3 - - 7 - 10 1 6 - 5 8 4

Sum among root notes 32 27 29 12 29 32 16 19 14 11 14 29 24 18 27 27 31
Conditional mean for IC( j),it 5,13 7,37 7,17 10,5 6,07 5,38 7,81 6,16 9,36 8,55 10,64 2,45 7,38 10,06 4,48 7,89 5,42
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Table 5: Rank of each country in each year for CNC
(j′),it

Year AUS AUT BEL CAN DNK FRA GER HKG IRE ITA JPN NLD SGP ZAF CHE GBR USA

1984 12 3 10 17 5 7 2 14 11 13 8 4 15 9 1 6 16
1985 11 3 7 17 10 5 2 15 12 13 8 4 16 9 1 6 14
1986 10 6 7 17 8 4 2 16 9 13 11 3 15 12 1 5 14
1987 11 7 8 17 6 9 3 14 10 13 5 2 16 12 1 4 15
1988 12 10 8 17 4 5 7 16 6 13 9 2 15 11 1 3 14
1989 13 11 3 17 6 4 8 15 7 10 9 2 12 16 1 5 14
1990 14 10 3 17 7 5 4 16 6 11 9 2 13 15 1 8 12
1991 15 9 5 17 11 2 4 14 7 6 12 3 10 16 1 8 13
1992 16 8 5 17 11 4 2 12 7 6 13 3 10 14 1 9 15
1993 15 7 5 16 10 4 3 14 6 9 11 1 12 13 2 8 17
1994 12 6 5 17 15 3 4 14 8 9 11 1 10 13 2 7 16
1995 14 6 5 16 10 2 4 13 8 9 15 1 11 12 3 7 17
1996 13 6 5 16 9 4 3 12 7 10 17 1 11 14 2 8 15
1997 14 7 4 12 9 5 3 10 6 16 17 1 15 13 2 8 11
1998 10 7 3 14 13 5 2 9 6 15 17 1 16 11 4 8 12
1999 11 6 4 16 17 5 2 10 7 12 14 1 15 9 3 8 13
2000 11 6 5 14 17 3 1 9 10 8 15 2 16 12 4 7 13
2001 10 8 7 15 17 2 3 9 11 5 14 1 13 12 4 6 16
2002 13 9 4 16 12 2 3 8 10 5 15 1 17 11 6 7 14
2003 12 10 6 17 9 2 5 11 8 4 16 1 14 15 3 7 13
2004 14 10 7 17 9 2 5 11 8 3 15 1 13 16 6 4 12
2005 12 11 4 15 9 1 7 16 8 3 17 2 14 10 6 5 13
2006 11 10 4 16 9 1 6 17 8 3 15 2 13 14 5 7 12
2007 11 10 4 17 8 1 5 16 9 3 14 2 13 12 7 6 15
2008 13 9 3 17 6 1 5 15 10 4 14 2 12 11 8 7 16
2009 13 9 6 17 7 1 4 14 10 3 15 2 12 11 8 5 16
2010 13 8 6 17 9 1 4 14 10 3 15 2 12 11 7 5 16
2011 13 7 6 17 9 1 4 14 10 3 15 2 11 12 8 5 16
2012 13 7 6 17 10 1 4 14 9 3 15 2 12 11 8 5 16
2013 12 8 4 17 10 2 3 14 7 5 15 1 13 11 9 6 16
2014 12 6 4 16 10 1 3 14 9 8 17 2 13 11 5 7 15
2015 13 7 4 16 10 2 3 14 9 8 17 1 12 11 6 5 15

Mean 12.5 7.7 5.2 16.3 9.8 3.0 3.8 13.3 8.4 7.8 13.4 1.8 13.2 12.2 4.0 6.3 14.4
Order of mean 12 7 5 17 10 2 3 14 9 8 15 1 13 11 4 6 16
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Table 6: Rank of each country in each year for CNU
(j′),it

Year AUS AUT BEL CAN DNK FRA GER HKG IRE ITA JPN NLD SGP ZAF CHE GBR USA

1984 9 3 11 17 12 6 1 14 10 16 8 4 13 7 2 5 15
1985 10 3 7 17 11 8 2 15 12 16 9 4 13 5 1 6 14
1986 8 6 7 17 9 5 2 16 12 14 11 3 13 10 1 4 15
1987 11 5 6 17 10 8 4 16 9 13 7 2 12 14 1 3 15
1988 13 9 8 16 5 3 4 17 6 11 10 2 14 12 1 7 15
1989 13 11 8 15 4 3 7 17 6 9 10 2 16 12 1 5 14
1990 12 11 6 16 7 4 3 13 5 8 9 2 17 15 1 10 14
1991 12 8 4 17 10 5 3 16 7 6 11 2 13 15 1 9 14
1992 13 8 5 17 10 4 3 14 7 6 12 2 11 15 1 9 16
1993 14 7 3 17 10 4 5 15 6 8 11 1 12 13 2 9 16
1994 13 6 4 17 15 5 3 11 8 9 14 1 10 12 2 7 16
1995 12 4 5 17 9 6 3 14 8 11 15 1 10 13 2 7 16
1996 14 5 4 17 9 6 2 11 7 13 16 1 10 12 3 8 15
1997 11 2 5 17 9 7 3 13 6 14 16 1 10 12 4 8 15
1998 17 6 2 13 11 5 3 16 7 15 10 1 12 14 4 8 9
1999 17 6 2 13 16 5 3 11 8 9 14 1 15 10 4 7 12
2000 14 8 4 15 17 2 3 12 9 7 13 1 16 11 5 6 10
2001 13 8 5 14 17 2 3 12 9 6 16 1 15 11 4 7 10
2002 14 8 7 16 15 2 3 11 9 4 17 1 13 10 5 6 12
2003 13 9 7 17 14 2 4 10 8 3 16 1 15 12 5 6 11
2004 13 10 6 16 9 1 5 12 8 3 15 2 14 17 7 4 11
2005 11 10 5 17 8 1 6 12 9 3 14 2 13 15 4 7 16
2006 11 10 4 17 8 1 6 15 9 3 13 2 14 12 5 7 16
2007 11 10 5 17 8 1 4 15 9 3 14 2 13 12 6 7 16
2008 12 8 7 17 10 1 3 14 9 4 15 2 13 11 5 6 16
2009 12 8 5 17 10 1 4 14 9 3 15 2 13 11 7 6 16
2010 12 8 6 17 9 1 4 14 10 3 16 2 13 11 7 5 15
2011 12 7 5 17 9 1 4 14 10 3 16 2 13 11 8 6 15
2012 12 7 6 17 10 1 4 14 9 3 15 2 13 11 8 5 16
2013 12 7 6 17 10 1 3 14 9 4 15 2 13 11 8 5 16
2014 11 5 4 17 10 2 3 14 9 6 15 1 13 12 8 7 16
2015 12 6 4 17 10 2 3 14 9 7 16 1 13 11 8 5 15

Mean 12.3 7.2 5.4 16.4 10.3 3.3 3.5 13.8 8.4 7.6 13.3 1.8 13.1 11.9 4.1 6.5 14.3
Order of mean 12 7 5 17 10 2 3 15 9 8 14 1 13 11 4 6 16
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Table 7: Rank of each country in each year for CLC
(j),it

Year AUS AUT BEL CAN DNK FRA GER HKG IRE ITA JPN NLD SGP ZAF CHE GBR USA

1984 12 4 11 17 5 6 3 13 10 16 9 2 14 8 1 7 15
1985 11 4 10 17 9 5 3 13 12 14 8 2 15 6 1 7 16
1986 10 6 8 17 7 4 3 16 9 13 11 2 14 12 1 5 15
1987 13 9 7 17 3 8 4 14 10 12 6 2 16 11 1 5 15
1988 13 10 5 17 4 7 8 15 6 12 9 2 16 11 1 3 14
1989 14 12 3 17 4 5 8 15 6 10 9 2 11 13 1 7 16
1990 15 8 3 17 6 5 4 16 7 11 10 2 12 14 1 9 13
1991 15 9 2 17 11 3 5 14 7 6 10 4 12 16 1 8 13
1992 15 8 5 17 12 4 2 13 7 6 11 3 10 14 1 9 16
1993 15 6 5 17 10 4 3 14 7 9 11 1 12 13 2 8 16
1994 13 6 5 17 12 4 3 15 8 9 11 1 10 14 2 7 16
1995 14 6 5 17 10 4 2 12 7 9 15 1 11 13 3 8 16
1996 13 6 5 17 9 4 2 12 7 10 15 1 11 14 3 8 16
1997 13 7 4 14 10 6 2 9 5 17 15 1 16 12 3 8 11
1998 11 8 3 14 17 5 2 6 7 16 13 1 15 12 4 9 10
1999 11 6 4 16 17 5 2 10 7 12 14 1 15 9 3 8 13
2000 12 8 5 16 17 3 1 7 11 10 13 2 15 9 4 6 14
2001 11 10 8 15 17 3 2 6 12 7 16 1 14 9 4 5 13
2002 12 10 5 17 13 2 3 8 11 4 16 1 14 9 6 7 15
2003 12 10 7 17 9 2 3 11 8 6 16 1 15 14 4 5 13
2004 12 14 7 17 9 2 6 10 8 4 16 1 15 11 5 3 13
2005 10 12 4 17 9 1 7 15 8 3 16 2 14 11 5 6 13
2006 11 10 4 17 9 1 7 16 8 3 15 2 13 12 5 6 14
2007 10 11 4 17 8 1 6 15 9 3 14 2 13 12 7 5 16
2008 12 9 2 17 7 1 4 14 10 5 15 3 13 11 8 6 16
2009 12 9 5 17 8 1 6 14 10 3 16 2 13 11 7 4 15
2010 13 7 6 17 9 1 5 14 10 3 15 2 12 11 8 4 16
2011 13 6 7 17 9 1 4 14 10 3 15 2 12 11 8 5 16
2012 13 5 7 17 10 1 4 14 9 3 15 2 12 11 8 6 16
2013 12 7 4 17 11 2 3 14 8 5 15 1 13 10 9 6 16
2014 12 7 4 17 10 2 3 14 9 8 16 1 13 11 5 6 15
2015 12 7 5 17 11 2 3 14 9 8 16 1 13 10 6 4 15

Mean 12.4 8.0 5.3 16.7 9.8 3.3 3.8 12.7 8.5 8.1 13.2 1.7 13.3 11.4 4.0 6.3 14.6
Order of mean 12 7 5 17 10 2 3 13 9 8 14 1 15 11 4 6 16
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Table 8: Rank of each country in each year for CLU
(j′),it

Year AUS AUT BEL CAN DNK FRA GER HKG IRE ITA JPN NLD SGP ZAF CHE GBR USA

1984 10 5 12 17 1 7 4 14 9 16 11 3 13 8 2 6 15
1985 11 3 10 17 8 6 4 13 12 16 9 5 14 2 1 7 15
1986 10 7 9 17 6 3 5 16 11 14 12 2 13 8 1 4 15
1987 12 6 7 17 5 8 3 16 9 13 10 2 14 11 1 4 15
1988 13 9 7 17 2 6 3 16 5 11 10 4 14 12 1 8 15
1989 13 11 7 17 2 5 4 16 6 9 10 3 14 12 1 8 15
1990 14 8 7 17 5 4 3 13 6 11 9 2 15 12 1 10 16
1991 12 7 4 17 10 5 3 15 8 6 11 2 14 13 1 9 16
1992 13 9 5 17 12 4 3 14 7 6 10 2 11 15 1 8 16
1993 14 6 3 17 10 5 4 13 7 8 12 1 11 15 2 9 16
1994 14 6 4 17 13 5 3 12 8 9 15 1 10 11 2 7 16
1995 13 4 5 17 9 6 2 14 8 10 15 1 11 12 3 7 16
1996 15 5 4 17 9 6 2 12 7 11 14 1 10 13 3 8 16
1997 12 3 5 17 9 7 2 10 6 16 13 1 11 15 4 8 14
1998 14 6 3 12 17 4 2 11 7 15 10 1 13 16 5 9 8
1999 14 6 3 16 17 4 2 11 8 10 13 1 15 9 5 7 12
2000 14 9 4 16 17 3 2 10 8 7 13 1 15 12 5 6 11
2001 13 8 7 14 17 3 2 12 9 6 15 1 16 10 4 5 11
2002 13 9 7 17 15 2 3 11 10 4 16 1 12 8 6 5 14
2003 14 10 7 17 13 2 3 9 8 4 16 1 15 11 5 6 12
2004 12 11 7 17 9 2 6 10 8 4 16 1 15 14 5 3 13
2005 10 11 5 17 8 2 7 12 9 4 13 1 14 15 3 6 16
2006 11 10 4 17 8 2 7 14 9 3 13 1 15 12 5 6 16
2007 11 10 4 17 8 1 7 15 9 3 14 2 13 12 5 6 16
2008 11 8 7 17 10 1 3 14 9 4 15 2 13 12 6 5 16
2009 12 8 4 17 10 1 5 14 9 3 15 2 13 11 7 6 16
2010 12 7 6 17 9 1 5 14 10 3 16 2 13 11 8 4 15
2011 12 6 7 17 8 2 4 14 10 3 16 1 13 11 9 5 15
2012 12 6 7 17 10 1 4 14 9 3 15 2 13 11 8 5 16
2013 12 5 7 17 10 2 3 14 9 4 15 1 13 11 8 6 16
2014 12 6 4 17 10 2 3 14 9 7 15 1 13 11 8 5 16
2015 12 5 6 17 10 2 3 14 9 8 15 1 13 11 7 4 16

Mean 12.4 7.2 5.9 16.7 9.6 3.6 3.6 13.2 8.4 7.8 13.2 1.7 13.2 11.5 4.2 6.3 14.7
Order of mean 12 7 5 17 10 2 3 13 9 8 14 1 14 11 4 6 16
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Figure 7: Multidimensional scaling among equity markets according to dissimi-
larity measure 1− τ̂ij (data set two)
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Figure 8: Country specific relevance for interconnectedness among equity mar-
kets (data set two)
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Figure 9: Probabilities for rare comovements among financial markets over time
(data set two)
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Table 9: Rank of each country in each year for CNC
(j′),it (data set two)

Year MEX COL BRA PER CHL ARG JPN GER FRA AUS KOR USA CAN

1999 3 13 4 8 9 2 12 6 10 7 11 1 5
2000 2 13 5 9 10 4 11 3 8 7 12 1 6
2001 2 13 4 7 8 3 9 10 11 6 12 1 5
2002 2 13 3 12 7 4 8 11 10 5 9 1 6
2003 2 13 5 12 6 11 7 9 10 3 8 1 4
2004 3 13 5 12 7 11 10 9 8 2 6 1 4
2005 4 13 6 12 9 11 10 8 5 2 7 1 3
2006 10 13 6 11 9 12 8 4 3 2 7 1 5
2007 3 13 1 10 6 9 12 8 7 5 11 2 4
2008 2 13 1 7 8 5 10 12 11 6 9 4 3
2009 2 10 1 7 8 5 9 13 12 6 11 4 3
2010 2 9 1 7 8 6 10 13 12 5 11 4 3
2011 3 11 1 6 7 5 8 13 12 10 9 2 4
2012 3 10 2 6 7 5 11 13 12 9 8 1 4
2013 4 10 3 6 5 7 11 13 12 8 9 2 1
2014 4 10 2 5 6 7 11 12 13 8 9 1 3
2015 4 8 3 5 6 12 10 13 11 7 9 1 2

Mean 3.2 11.6 3.1 8.4 7.4 7.0 9.8 10.0 9.8 5.8 9.3 1.7 3.8
Order of mean 3 13 2 8 7 6 10 12 10 5 9 1 4
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Table 10: Rank of each country in each year for CNU
(j′),it (data set two)

Year MEX COL BRA PER CHL ARG JPN GER FRA AUS KOR USA CAN

1999 3 13 4 11 9 2 10 6 8 7 12 1 5
2000 2 13 5 11 6 3 10 9 8 7 12 1 4
2001 2 13 5 12 6 3 10 8 9 7 11 1 4
2002 2 13 4 12 7 5 11 10 9 6 8 1 3
2003 3 13 4 12 6 8 10 11 9 5 7 1 2
2004 2 13 6 12 8 11 9 10 7 4 5 1 3
2005 2 13 6 12 8 11 9 10 7 3 5 1 4
2006 3 13 4 12 10 11 8 9 5 2 7 1 6
2007 2 13 1 12 10 9 6 7 4 3 8 5 11
2008 3 13 1 11 12 7 5 8 6 4 9 2 10
2009 3 13 1 7 12 8 6 11 10 4 9 2 5
2010 3 11 2 5 7 8 9 12 10 6 13 1 4
2011 3 11 2 5 9 7 10 13 12 6 8 1 4
2012 4 12 2 5 7 9 8 13 11 6 10 3 1
2013 4 10 2 6 5 7 11 13 12 8 9 1 3
2014 4 10 3 6 5 7 11 13 12 8 9 1 2
2015 3 8 4 6 5 13 10 11 12 7 9 1 2

Mean 2.8 12.1 3.3 9.2 7.8 7.6 9.0 10.2 8.9 5.5 8.9 1.5 4.3
Order of mean 2 13 3 11 7 6 10 12 8 5 8 1 4
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Table 11: Rank of each country in each year for CLC
(j),it

Year MEX COL BRA PER CHL ARG JPN GER FRA AUS KOR USA CAN

1999 4 13 1 9 10 2 12 6 11 8 7 3 5
2000 2 13 3 9 10 4 11 5 8 7 12 1 6
2001 2 13 4 8 7 3 11 10 12 6 9 1 5
2002 3 13 2 10 5 1 9 12 11 7 8 4 6
2003 2 13 3 12 8 7 10 9 11 4 6 1 5
2004 2 13 3 11 7 8 9 12 10 4 5 1 6
2005 6 13 3 12 9 11 8 10 7 2 5 1 4
2006 6 13 1 12 8 11 9 10 7 4 5 2 3
2007 2 13 1 6 8 7 10 12 11 5 9 4 3
2008 2 11 1 7 8 6 10 13 12 4 9 5 3
2009 4 13 1 7 10 6 9 12 11 3 8 5 2
2010 2 11 1 6 8 7 10 13 12 4 9 5 3
2011 2 8 1 6 7 5 10 13 12 9 11 3 4
2012 3 11 2 6 7 5 10 13 12 9 8 1 4
2013 4 10 3 7 6 5 11 13 12 8 9 1 2
2014 4 10 2 5 7 6 11 13 12 8 9 1 3
2015 4 7 3 6 5 10 11 12 13 8 9 1 2

Mean 3.2 11.6 2.1 8.2 7.6 6.1 10.1 11.1 10.8 5.9 8.1 2.4 3.9
Order of mean 3 13 1 9 7 6 10 12 11 5 8 2 4
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Table 12: Rank of each country in each year for CLU
(j′),it

Year MEX COL BRA PER CHL ARG JPN GER FRA AUS KOR USA CAN

1999 4 13 1 12 8 3 11 7 10 9 5 2 6
2000 2 13 3 11 9 4 10 6 7 8 12 1 5
2001 2 13 4 11 7 3 12 9 10 8 6 1 5
2002 4 13 3 11 6 1 12 10 9 8 7 2 5
2003 2 13 3 12 8 5 10 11 9 7 6 1 4
2004 2 13 4 12 9 7 8 11 10 6 3 1 5
2005 3 13 5 12 8 11 7 10 9 4 2 1 6
2006 3 13 1 11 7 9 8 12 10 5 6 2 4
2007 2 13 1 9 11 7 3 12 10 4 6 5 8
2008 2 13 1 8 10 6 5 12 11 4 7 3 9
2009 4 13 1 7 12 8 9 11 10 3 6 2 5
2010 3 11 2 5 9 7 8 13 12 6 10 1 4
2011 2 8 1 5 9 6 11 13 12 7 10 3 4
2012 4 13 2 6 8 9 10 12 11 5 7 1 3
2013 4 11 2 7 6 5 10 13 12 8 9 1 3
2014 3 10 2 6 7 5 11 13 12 8 9 1 4
2015 2 6 3 7 5 10 11 12 13 9 8 1 4

Mean 2.8 11.9 2.3 8.9 8.2 6.2 9.2 11.0 10.4 6.4 7.0 1.7 4.9
Order of mean 3 13 2 9 8 5 10 12 11 6 7 1 4
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